156 research outputs found

    Cloning and sequencing of complete τ-crystallin cDNA from embryonic lens of Crocodylus palustris

    Get PDF
    τ-Crystallin is a taxon-specific structural protein found in eye lenses. We present here the cloning and sequencing of complete τ-crystallin cDNA from the embryonic lens of Crocodylus palustris and establish it to be identical to the τ-enolase gene from non-lenticular tissues. Quantitatively, the τ-crystallin was found to be the least abundant crystallin of the crocodilian embryonic lenses. Crocodile τ-crystallin cDNA was isolated by RT-PCR using primers designed from the only other reported sequence from duck and completed by 5'- and 3'-rapid amplification of cDNA ends (RACE) using crocodile gene specific primers designed in the study. The complete τ-crystallin cDNA of crocodile comprises 1305 bp long ORF and 92 and 409 bp long untranslated 5'- and 3'-ends respectively. Further, it was found to be identical to its putative counterpart enzyme τ-enolase, from brain, heart and gonad, suggesting both to be the product of the same gene. The study thus provides the first report on cDNA sequence of τ-crystallin from a reptilian species and also re-confirms it to be an example of the phenomenon of gene sharing as was demonstrated earlier in the case of peking duck. Moreover, the gene lineage reconstruction analysis helps our understanding of the evolution of crocodilians and avian species

    Prescription practices and availability of artemisinin monotherapy in India: where do we stand?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The World Health Organization has urged all member states to deploy artemisinin-based combination therapy and progressively withdraw oral artemisinin monotherapies from the market due to their high recrudescence rates and to reduce the risk of drug resistance. Prescription practices by physicians and the availability of oral artemisinin monotherapies with pharmacists directly affect the pattern of their use. Thus, treatment practices for malaria, with special reference to artemisinin monotherapy prescription, in selected states of India were evaluated.</p> <p>Methods</p> <p>Structured, tested questionnaires were used to conduct convenience surveys of physicians and pharmacists in eleven purposively selected districts across six states in 2008. In addition, exit interviews of patients with a diagnosis of uncomplicated malaria or a prescription for an anti-malarial drug were also performed. Logistic regression was used to determine patient clinical care, and institutional factors associated with artemisinin monotherapy prescription.</p> <p>Results</p> <p>Five hundred and eleven physicians from 196 health facilities, 530 pharmacists, and 1, 832 patients were interviewed. Artemisinin monotherapy was available in 72.6% of pharmacies and was prescribed by physicians for uncomplicated malaria in all study states. Exit interviews among patients confirmed the high rate of use of artemisinin monotherapy with 14.8% receiving such a prescription. Case management, i.e. method of diagnosis and overall treatment, varied by state and public or private sector. Treatment in the private sector (OR 8.0, 95%CI: 3.8, 17) was the strongest predictor of artemisinin monotherapy prescription when accounting for other factors. Use of the combination therapy recommended by the national drug policy, artesunate + sulphadoxine-pyrimethamine, was minimal (4.9%), with the exception of one state.</p> <p>Conclusions</p> <p>Artemisinin monotherapy use was widespread across India in 2008. The accessible sale of oral artemisinin monotherapy in retail market and an inadequate supply of recommended drugs in the public sector health facilities promoted its prescription. This study resulted in notifications to all state drug controllers in India to withdraw the oral artemisinin formulations from the market. In 2010, artesunate + sulphadoxine-pyrimethamine became the universal first-line treatment for confirmed <it>Plasmodium falciparum </it>malaria and was deployed at full scale.</p

    The viral capsid as novel nanomaterials for drug delivery

    Get PDF
    The purpose of this review is to highlight recent scientific developments and provide an overview of virus self-assembly and viral particle dynamics. Viruses are organized supramolecular structures with distinct yet related features and functions. Plant viruses are extensively used in biotechnology, and virus-like particulate matter is generated by genetic modification. Both provide a material-based means for selective distribution and delivery of drug molecules. Through surface engineering of their capsids, virus-derived nanomaterials facilitate various potential applications for selective drug delivery. Viruses have significant implications in chemotherapy, gene transfer, vaccine production, immunotherapy and molecular imaging

    A unique view of SARS-COV-2 through the lens of ORF8 protein

    Get PDF
    Immune evasion is one of the unique characteristics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) attributed to its ORF8 protein. This protein modulates the adaptive host immunity through down-regulation of MHC-1 (Major Histocompatibility Complex) molecules and innate immune responses by surpassing the host\u27s interferon-mediated antiviral response. To understand the host\u27s immune perspective in reference to the ORF8 protein, a comprehensive study of the ORF8 protein and mutations possessed by it have been performed. Chemical and structural properties of ORF8 proteins from different hosts, such as human, bat, and pangolin, suggest that the ORF8 of SARS-CoV-2 is much closer to ORF8 of Bat RaTG13-CoV than to that of Pangolin-CoV. Eighty-seven mutations across unique variants of ORF8 in SARS-CoV-2 can be grouped into four classes based on their predicted effects (Hussain et al., 2021) [1]. Based on the geo-locations and timescale of sample collection, a possible flow of mutations was built. Furthermore, conclusive flows of amalgamation of mutations were found upon sequence similarity analyses and consideration of the amino acid conservation phylogenies. Therefore, this study seeks to highlight the uniqueness of the rapidly evolving SARS-CoV-2 through the ORF8

    Long-range angular correlations on the near and away side in p&#8211;Pb collisions at

    Get PDF

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Full text link

    COVID-19 Associated acute limb ischemia

    No full text
    A 78-year-old man, known case of, diabetes mellitus, and hypertension presented with fever, dry cough and dyspnea of five-day duration. He tested positive for SARS-CoV-2 infection and was admitted to the intensive care unit as a case of severe COVID -19 pneumonia. Evaluation revealed raised inflammatory markers CRP: 92.2 mg/ml, LDH: 556 IU/L, Ferritin: 286 ng/ml, D-dimer: 3716 ng/ml. On day 9 of illness, he developed numbness, pain and discoloration of right hand

    Emerging MXene–Polymer Hybrid Nanocomposites for High-Performance Ammonia Sensing and Monitoring

    No full text
    Ammonia (NH3) is a vital compound in diversified fields, including agriculture, automotive, chemical, food processing, hydrogen production and storage, and biomedical applications. Its extensive industrial use and emission have emerged hazardous to the ecosystem and have raised global public health concerns for monitoring NH3 emissions and implementing proper safety strategies. These facts created emergent demand for translational and sustainable approaches to design efficient, affordable, and high-performance compact NH3 sensors. Commercially available NH3 sensors possess three major bottlenecks: poor selectivity, low concentration detection, and room-temperature operation. State-of-the-art NH3 sensors are scaling up using advanced nano-systems possessing rapid, selective, efficient, and enhanced detection to overcome these challenges. MXene–polymer nanocomposites (MXP-NCs) are emerging as advanced nanomaterials of choice for NH3 sensing owing to their affordability, excellent conductivity, mechanical flexibility, scalable production, rich surface functionalities, and tunable morphology. The MXP-NCs have demonstrated high performance to develop next-generation intelligent NH3 sensors in agricultural, industrial, and biomedical applications. However, their excellent NH3-sensing features are not articulated in the form of a review. This comprehensive review summarizes state-of-the-art MXP-NCs fabrication techniques, optimization of desired properties, enhanced sensing characteristics, and applications to detect airborne NH3. Furthermore, an overview of challenges, possible solutions, and prospects associated with MXP-NCs is discussed

    Crocodilian τ-crystallin: overexpression, purification, and characterization

    No full text
    τ-Crystallin is a taxon-restricted crystallin found in eye lenses of reptiles and a few avian species but presumably absent in mammals. The level of τ-crystallin in the lens varies among different species. In the crocodile lens, it is the least abundant crystallin and is present in trace amounts. We present a method for cloning, overexpression, and purification of crocodilian τ-crystallin utilizing a combination of gel filtration and ion-exchange chromatography yielding an extremely purified protein. The protein gets profusely expressed resulting in a fairly high yield and exists as a monomeric entity of 47.5 kDa molecular mass. The recombinant τ-crystallin exists in a properly folded native state as probed by circular dichroism and fluorescence spectroscopy and exhibits enolase activity
    corecore